Электрокардиография и электрокардиограмма

Что такое кардиография

ЭКГ — периодически повторяющаяся кривая, представляющая собой графическое отображение изменений во времени разности потенциалов между различными точками тела, возникающих вследствие электрических процессов, которыми сопровождается распространение возбуждения по работающему сердцу. Распространение возбуждения по сердцу сопровождается возникновением в окружающем его объемном проводнике (теле) электрического поля.

Форма, амплитуда и знак элементов электрокардиограммы зависят от пространственно-временных характеристик возбуждения сердца (хронотопографии возбуждения), от геометрических характеристик и пассивных электрических свойств тела как объемного проводника, от свойств отведений ЭКГ как измерительной системы.

Частота и ритм сердечных сокращений определяются возбуждением, ритмически генерируемым так наз. водителем ритма (см. Пейсмекер), распространяющимся по проводящей системе сердца (см.) и влекущим за собой волну сокращения миокарда.

Проводящая система сердца состоит из мышечных волокон особого строения. В ней различают узлы и пучки. В норме водителем ритма у высших животных и человека является синусно-предсердный узел, расположенный между верхней полой веной и правым ушком предсердия. Отсюда возбуждение распространяется по внутрипредсердным проводящим путям, миокарду предсердий и охватывает предсердно-желудочковый (атриовентрикулярный) узел, затем, после нек-рой задержки,— пучок Гиса (предсердно-желудочковый, или атриовентрикулярный пучок) с его разветвлениями и волокнами Пуркинье, а также «рабочий» миокард желудочков.

Сформировавшаяся в процессе эволюции очередность возбуждения и задержки волны возбуждения в предсердно-желудочковом узле создают необходимую для наиболее эффективного обеспечения насосной функции сердца последовательность сокращения его отделов и промежуток времени, требующийся для наполнения их кровью.

Нарушения последовательности возбуждения разных отделов сердца находят определенное отражение на ЭКГ. Это дает возможность использовать электрокардиографию для весьма точной диагностики различных нарушений ритма и блокады проведения возбуждения, недоступной для других видов исследования, позволяет определить локализацию источника экстрасистолии, диагностировать гипертрофию предсердий и желудочков, выявлять диффузные и очаговые изменения миокарда и другие патологические состояния сердца.

Особенность электрокардиографического метода состоит в том, что отводящие электроды всегда расположены в отдалении от возбужденных клеток. Таким образом регистрируется разность потенциалов в соответствующих, находящихся на более или менее значительном расстоянии одна от другой, точках электрического поля сердца.

На практике это расстояние минимально при записи эндокардиальной или эпикардиальной электрограммы и наиболее велико при регистрации стандартных отведений ЭКГ от конечностей. Информация об электрическом генераторе сердца, которую при этом получают, непосредственно связана с точностью представления о его поле, обеспечиваемом анализом ЭКГ, зарегистрированной в тех или иных отведениях.

Суммарный электрический генератор сердца состоит из множества элементарных генераторов — возбужденных клеток, распределенных в пространстве и составляющих фронт волны возбуждения. Число этих клеток и характер их распределения и ходе распространения возбуждения непрерывно меняются. Суммарный генератор имеет поэтому очень сложную переменную структуру, точное количественное описание которой практически неосуществимо.

Для приближенного описания используют эквивалентные генераторы (ЭГ) — простые математические модели известной, задаваемой исследователем структуры в виде совокупности источников тока, которые при расположении их в области сердца должны были бы приводить к возникновению электрического поля, воспроизводящего поле сердца.

ЭГ тем совершеннее, чем точнее его поле совпадает с полем сердца. Для оценки точности совпадения выбирают критерий эквивалентности. Адекватность модели определяется тем, в какой степени ее компоненты могут быть однозначно определены расчетным путем на основе анализа ЭКГ в данных отведениях (так называемая обратная задача электрографии, то есть построение модели ЭГ по имеющимся ЭКГ).

где h(i) — характеристика мультиполя. l(i) — коэффициенты, определяемые измерительными характеристиками отведений, локализацией точек отведений и свойствами проводящей среды, і — порядок мультиполя (мультиполь первого порядки — диполь, второго порядка — квадруполь, третьего порядка — октаполь и т. д.), используемый в данной модели и определяемый задаваемым критерием эквивалентности.

Электрокардиография и электрокардиограмма

Рис. 1. Схематическое изображение электрического поля сердца (по схеме Уоллера): изопотенциальные линии (а — положительные, б — отрицательные) расположены нормально к силовым линиям (с), исходящим от положительного полюса ( ) диполя и направленным к отрицательному полюсу (—). Результирующая ось АБ, или ось тока действия, перпендикулярна к линии нулевого потенциала.

Электрокардиография и электрокардиограмма

Рис. 2. Схемы отведений электрокардиограммы от конечностей: а — стандартные отведения (треугольник Эйнтховена); проекция вектора Е на ось отведения образуется при опускании на нее перпендикуляров из нулевой точки диполя (О) и из конца интегрального сердечного вектора (Е); проекция нулевой точки разделяет каждую из осей отведения на положительный и отрицательный компоненты; ПР — правая рука, ЛР — левая рука, ЛН — левая нога, е(I), е(II), е(III) — проекции интегрального сердечного вектора соответственно на оси отведения ПР — ЛР, ПР — ЛН и ЛР — ЛН (I, II и III — стандартные отведения). Рядом с осями отведений схематически представлены ЭКГ. Угол α между вектором Е и осью I отведения определяет направление средней электрической оси сердца; б — схема расположения осей усиленных однополюсных отведений от конечностей; aVR, aVL,aVF (сплошные линии); знаками ” ” и “-” обозначены положительный и отрицательный полюса отведений.

Первая теоретическая концепция генеза ЭКГ, получившая название «концепция сердечного диполя» была предложена Уоллером (1887) и разработана В. Эйнтховеном (1912). Согласно теории Уоллера — Эйнтховена моментное электрическое состояние работающего сердца может быть представлено так называемым эквивалентным сердечным диполем.

Диполем называют совокупность двух точечных электрических зарядов, равных по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга; последнее может быть сколь угодно малым. Вокруг диполя образуется электрическое поле. Считают, что его силовые линии исходят от положительного полюса (исток) и входят в отрицательный полюс (сток).

Перпендикулярно к силовым линиям проходят так называемые изопотенциальные линии, то есть линии, в любой точке которых величина электрического потенциала одинакова. Абсолютная величина потенциала для изопотенциальных линий обусловлена их расположением относительно полюсов диполя (рис. 1). Прямая линия, проходящая через полюса диполя, называется дипольной осью. В.

Эйнтховен рассматривал эквивалентный сердечный диполь как гипотетический источник тока в объемном проводнике, сделав при этом ряд допущений, в частности предположив, что эквивалентный диполь расположен в центре грудной клетки как в объемном проводнике, причем этот проводник гомогенен и имеет форму сферы бесконечного радиуса.

Эти допущения позволяют рассматривать сердце как эквивалентный диполь неизмеримо малой величины. Если при этом регистрировать разность потенциалов с вершин равностороннего треугольника, за которые В. Эйнтховен принял правую руку, левую руку и лонное сочленение, или лобковый симфиз (в практической электрокардиографии в качестве третьей вершины используется левая нога), можно с помощью несложных расчетов определить величину и направление (то есть векторы) электродвижущих сил.

Согласно Уилсону (F. N. Wilson, 1935), который ввел представление об интегральном векторе сердца, последний является векторной суммой электродвижущих сил огромного множества диполей, хотя, с точки зрения физики, вполне закономерно рассматривать его как вектор ЭДС единого эквивалентного диполя. Проецируя расположенный в пространстве интегральный вектор сердца на треугольник Эйнтховена, лежащий во фронтальной плоскости тела, получают так наз.

манифестирующую ось сердца (также являющуюся вектором в данной плоскости). Если спроецировать манифестирующую ось на каждую из сторон треугольника Эйнтховена, получается скалярная величина ЭДС сердца в трех стандартных отведениях в данный момент времени. Эти скалярные величины, регистрируемые на протяжении сердечного цикла, и формируют ЭКГ (рис. 2, а, б).

eII = eI eIII

где eI, eII, eIII — алгебраическая величина сигналов, зарегистрированных соответственно в I, II и III стандартных отведениях. Указанное соотношение носит название правила Эйнтховена; его справедливость подтверждается несложными тригонометрическими расчетами. Направление средней проекции интегрального вектора сердца на фронтальную плоскость тела получило название «электрическая ось сердца».

Его определяют по соотношению положительных и отрицательных зубцов комплекса в I и III отведениях и считают одним из важных параметров ЭКГ. В клинической Э. стандартные отведения сохраняют свое значение до наст. времени. Позднее были предложены три однополюсных отведения от конечностей, а также шесть однополюсных грудных отведений.

Последние предназначены для регистрации проекции вектора дипольного момента сердца на трансверсальную плоскость тела. Индифферентный электрод этих отведений (терминаль Уилсона) объединяет через смешивающие резисторы потенциалы обеих верхних и левой нижней конечностей. Воображаемые оси униполярных отведений соединяют точки наложения дифферентных электродов с центром сердца, который имеет потенциал, близкий к нулю, то есть весьма мало изменяющийся за время сердечного цикла.

Двенадцать перечисленных отведений являются общепринятыми в клинической электрокардиографии. На самом деле эти отведения чувствительны и к недипольным компонентам электрического поля сердца, но не обеспечивают возможности количественного определения последних. Для точной регистрация дипольных компонентов разработаны системы ортогональных корригированных отведений.

Они отличаются тем, что регистрация ЭКГ производится в трехмерной системе координат, оси X, У, Z которых (оси отведений) взаимно перпендикулярны. Масштабные коэффициенты по осям в хорошо корригированных системах равны между собой, а чувствительность к недипольным компонентам электрического поля сердца отсутствует.

Дипольная теория получила широкое признание. Тем не менее для улучшения получаемой диагностической информации создано много других систем отведений ЭКГ. Среди них системы множественных отведений ЭКГ, позволяющие изучать распределение потенциала поверхности тела и его изменения во времени. Исследования, выполненные с использованием различных систем множественных отведений, показали, что по своей структуре электрическое поле сердца намного сложнее поля, которое должно было бы возникнуть под влиянием дипольного источника тока, и что дипольное описание электрического поля сердца — довольно грубое приближение.

Поэтому системы ортогональных корригированных отведений, чувствительные лишь к дипольным компонентам поля, содержат хотя и важную, но не исчерпывающую диагностическую информацию. Создание оптимального эквивалентного генератора сердца — одна из важнейших задач современного биофизического направления электрокардиографии.

История

Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили Р. Келликер и И. Мюллер (1856) на нервно-мышечном препарате лягушки. Шарпи (W. Sharpey, 1880) и Уоллер (A. D. Waller, 1887) первыми записали ЭКГ человека капиллярным электрометром, сконструированным Липпманном (G. Lippmann) в 1873 году Уоллер (1887—1889) предложил схему электрического поля сердца (рис.

1), выдвинул представление о дипольной структуре сердца и электрической оси. Развитие электрокардиографии неразрывно связано с именем голландского физиолога В. Эйнтховена, который в 1903 году создал первый электрокардиограф на базе струнного гальванометра, изобретенного Швейггером (J. S. Schweigger).

В. Эйнтховен с сотрудниками предложил три стандартных отведения от конечностей, описал нормальную ЭКГ, разработал основы векторного анализа ЭКГ, базирующегося на изучении проекций вектора электродвижущей силы сердца на оси стандартных отведений, предложил метод определения электрической оси сердца и угла а, сформулировал правило треугольника и др.

Существенный вклад в электрокардиографию внес отечественный физиолог А. Ф. Самойлов, описавший зависимость ЭКГ от фаз дыхания и представивший экспериментальное обоснование возможности кольцевого движения волны возбуждения по миокарду предсердий при мерцательной аритмии. А. Ф. Самойлов изучал вопросы генеза ЭКГ, совместно с А. 3.

Развитие клинической электрокардиографии связано с именами В. Ф. Зеленина, описавшего ЭКГ при увеличении отделов сердца (1910) и нарушениях сердечного ритма (1915); Смита (Р. М. Smith, 1918), Парди (Н. Е. В. Pardee, 1920), Бейли (R. Вауley, 1942), показавших возможность диагностики инфаркта миокарда;

Ротбергера и Винтерберга (С. J. Rothberger, Н. Winterberg, 1917), Венкебаха и Винтерберга (К. Wenckebach, Н. Winterberg, 1927), углубленно изучивших ЭКГ при нарушениях ритма и проводимости. В 1932 году Уилсон (F. N. Wilson) предложил однополюсные отведения. В 1942 году Гольдбергер (В. Goldberger) разработал усиленные однополюсные отведения от конечностей. С этого же времени в практику вошли грудные отведения ЭКГ, существенно расширившие возможности диагностики.

Первые советские руководства и монографии по электрокардиографии написаны Л. И. Фогельсоном (1928, 1948), П. Е. Лyкомским (1943), В. Е. Незлиным и С. Е. Карпай (1948, 1959), Г. Я. Дехтярем (1951), А. В. Гольцманом и И. Т. Дмитриевой (1960).

Уилсон (1935) ввел понятие об интегральном векторе сердца, отражающем суммарную ЭДС как сумму элементарных ЭДС всех возбудившихся элементов (диполей) миокарда. Он показал изменение интегрального вектора в течение сердечного цикла. Шефер (Н. Schaefer, 1951) и Грант (R. Grant, 1951 —1957) развили векторный анализ ЭКГ, связали изменение ориентации интегрального вектора с распространением возбуждения по различным отделам сердца, дали характеристику ЭКГ в любом отведении как кривой, регистрирующей динамику проекции интегрального вектора на ось данного отведения в течение сердечного цикла (рис. 2, 3).

Показания к проведению электрокардиограммы

Запись ЭКГ обычно проводится в лежачем положении. Для снятия кардиограммы используется стационарный или переносной аппарат – электрокардиограф. Стационарные аппараты устанавливаются в медицинских учреждениях, а переносные используются бригадами неотложной помощи. В аппарат поступает информация об электрических потенциалах на поверхности кожи. Для этого применяются электроды, прикрепляемые к области груди и конечностям.

Эти электроды называются отведениями. На груди и конечностях обычно устанавливается по 6 отведений. Грудные отведения обозначаются V1-V6, отведения на конечностях называются основными (I,II,III) и усиленными (aVL, aVR, aVF). Все отведения дают несколько разную картину колебаний, однако суммировав информацию со всех электродов, можно выяснить детали работы сердца в целом. Иногда используются дополнительные отведения (D, А, I).

Обычно кардиограмма выводится в виде графика на бумажный носитель, содержащий миллиметровую разметку. Каждому отведению-электроду соответствует свой график. Стандартная скорость движения ленты составляет 5 см/c, может применяться и другая скорость. В кардиограмме, выводимой на ленту, также могут указываться основные параметры, показатели нормы и заключение, сгенерированные автоматически. Также данные могут записываться в память и на электронные носители.

После проведения процедуры обычно требуется расшифровка кардиограммы опытным врачом-кардиологом.

Проведение электрокардиограммы может назначаться врачом практически любой специализации, но чаще всего направление на исследование дает кардиолог, терапевт или гинеколог (для диагностики беременных женщин). Проводиться процедура может в профилактических целях для выявления скрытых болезней; при наличии жалоб для постановки диагноза или для контроля за динамикой лечения.

  • наличие у пациента жалоб на боли или дискомфорт в груди в области сердца;
  • повышенное кровяное давление;
  • частые обмороки, головокружения;
  • одышка, которая может появляться не только после физических нагрузок, но и в состоянии покоя;
  • при наличии некоторых заболеваний: сахарного диабета, ревматизма, после инсульта или инфаркта миокарда;
  • перед проведением оперативного вмешательства;
  • беременным женщинам, поскольку в таком состоянии значительно увеличивается нагрузка на сердце, в связи с увеличением объема крови и изменением гормонального фона;Показания к проведению и правила расшифровки результатов ЭКГ
  • людям в возрасте старше 40 лет для своевременного выявления заболеваний, которые могут протекать бессимптомно (ишемическая болезнь сердца) или перенесенного «на ногах» инсульта.

Проведение процедуры абсолютно безопасное и не имеет противопоказаний, поэтому при наличии показаний может проводиться даже женщинам в положении или маленьким детям.

Существует несколько видов проведения ЭКГ, которые позволяют определить работу сердечной мышцы в разных условиях и при разных состояниях пациента. Рассмотрим каждый из них.Классическая ЭКГ.

Процедура проводит в специальном кабинете, пациент с обнаженным торсом и ногами укладывается на кушетку.

На груди, руках и ногах располагается специальные электроды, которые на протяжении определенного времени фиксируют силу и направление электрического тока, который возникает при каждом сокращении сердца. Все показатели фиксируются на бумаге, после чего врач их расшифровывает и ставит диагноз.

ЭКГ по Холтеру. Такое исследование позволяет оценить работу сердца в разных условиях, поскольку контроль проводиться на протяжении суток. Запись данных производится на специальный прибор, который постоянно находится с человеком и фиксирует показатели в состоянии покоя, во время сна, в период физических нагрузок и приема пищи. После исследования врач расшифровывает результат при помощи компьютера и выносит «вердикт».

Стресс-ЭКГ (электрокардиограмма с нагрузкой). Во время проведения процедуры пациент выполняет физические упражнения (бег на беговой дорожке или занятие на велотренажере) и в это время фиксируются показатели работы сердца. По окончании исследования проводится расшифровка данных и сравниваются данные с результатами ЭКГ в состоянии покоя.

Проведение ЭКГ не требует специальной подготовки. Существует лишь несколько требований, соблюдение которых поможет получить максимально точные результаты: процедуру необходимо проводить минимум через 2 часа после приема пищи, перед исследованием следует отдохнуть 10-15 минут, чтобы восстановить привычный ритм.

По окончании исследования на руки пациенту выдается листок с результатами кардиограммы, с которым необходимо обратиться к кардиологу для расшифровки. При изучении данных особое внимание уделяется следующим показателям:

  • Сердечный ритм. При нормальной работе сердца промежуток между зубцами RR будет одинаковым. Если они разные это является нарушением ритма и пациенту требуется дополнительное обследование.
  • Частота сердечных сокращений (ЧСС). Этот показатель зависит от возраста пациента. Так, у здорового взрослого человека ЧСС равен 60-90 ударов в минуту. У детей эти данные гораздо выше, например, у новорожденного 140-160 уд/мин, у детей от 1 до 2 лет – 120-125.Показания к проведению и правила расшифровки результатов ЭКГ
  • Источник возбуждения. У здорового человека таким источником является синусовый узел, поэтом нормальный ритм – синусовый. Повышенный ритм свидетельствует о тахикардии, а замедленный о брадикардии. Патологией является указание в результатах ЭКГ предсердечного, желудочкового или атриовентрикулярного ритмов.
  • Электрическая ось сердца. В норме этот показатель варьируется от полугоризонтального до полувертикального. Если ЭОС смещена влево или вправо это может свидетельствовать о нарушениях проводимости или гипертрофии миокарда.Показания к проведению и правила расшифровки результатов ЭКГ
  • Анализ зубцов Т и Р. Первый показывает затухание возбуждения желудочков и нормой будет его положительный показатель. В случает отрицательного показателя Т зубца, возможно развитие инфаркта миокарда или ишемической болезни сердца. Зубец Р является отражением появления импульса в клетках и нормой являются положительные данные.
  • Показатели QRS дают возможность отследить, как проводится импульс по всем отделам сердца. Нормой является длительность его до 0,1 секунды. Изменения показателей свидетельствуют об инфаркте миокарда, желудочковой тахикардии или блокаде ножек пучка Гиса.

Проведение электрокардиограммы – это быстрое, простое и достоверное исследование работы сердечной мышцы, которое позволяет выявить малейшие патологические изменения. Для процедуры не нужно готовится или соблюдать строгие правила ее проведения. На основе расшифровки результатов врач ставит диагноз и при необходимости назначает лечение или дополнительное обследование.

Теоретические основы электрокардиографии

eII = eI eIII

ЭКГ у плода регистрируют непрямым методом (оба электрода располагают на передней брюшной стенке женщины), комбинированным методом (один электрод помещают на переднюю брюшную стенку, а второй — в прямую кишку, влагалище или матку) и прямым методом (электроды устанавливают непосредственно на головку рождающегося плода).

Электрокардиография и электрокардиограмма

У здоровых детей разного возраста ЭКГ имеет свои особенности. Это зависит от анатомического положения сердца в грудной клетке, соотношения толщины стенок левого и правого желудочков, особенностей нейроэндокринной регуляции сердечно-сосудистой системы. Частота сердечных сокращений у плода в ранние сроки беременности составляет 150—170 в 1 мин.

, в конце беременности — 120—140 в 1 мин.; продолжительность интервала Р—Q в начале беременности колеблется от 0,06 до 0,12 сек., в поздние сроки беременности — от 0,08 до 0,13 сек.; длительность комплекса QRS возрастает с 0,02—0,03 сек. в ранние сроки беременности до 0,04 —0,05 сек.— в поздние ее сроки. С увеличением срока беременности увеличивается и амплитуда зубцов R, Q, S.

Регистрацию ЭКГ у плода производят для диагностики многоплодия, различных нарушений сердечной деятельности, с целью определения предлежащей части, исключения опухоли, несостоявшегося выкидыша и т. д.

После рождения ребенка на ЭКГ отмечается преобладание электрической активности правого желудочка сердца, что связано с особенностями внутриутробного кровообращения (см. Плод). Электрическая ось сердца отклонена вправо, угол а колеблется между 90 и 180°. Ритм сердечных сокращений у новорожденных характеризуется выраженной лабильностью.

В первые дни жизни наблюдается относительная брадикардия (110—130 сокращений в 1 мин.), затем повышение частоты сердечных сокращений со значительными колебаниями (от 130 до 180 сокращений в 1 мин.). Зубец Р в I и II стандартных отведениях высокий и часто заостренный, особенно у недоношенных. Отношение его высоты к высоте зубца R в указанных отведениях составляет 1:3.

Зубец Q глубокий в отведениях II, III, aVF и aVR. Зубец R в отведениях II, III, aVF, V3-V6 высокий, а зубец S в отведениях I, aVL, V2—V6 глубокий. Зубец Т в стандартных отведениях снижен, иногда двухфазный или даже отрицательный; отношение его амплитуды к высоте зубца R I-II составляет 1 : 6. В отведениях aVL и aVF он может быть отрицательным, а в отведении aVR — положительный. В грудных отведениях от V1 до V3 и даже до V4 зубец Т отрицательный, зубец T (V5,V6) снижен, иногда отрицательный.

Длительность основных интервалов и ширина зубцов ЭКГ у детей с возрастом увеличиваются. Продолжительность зубца Р у новорожденных в среднем составляет 0,05 сек. (0,04—0,06 сек.), длительность интервала Р—Q — в среднем 0,11 сек. (0,09—0,13 сек.). Ширина комплекса QRS в среднем соответствует 0,05 сек.

ЭКГ у детей до двух лет характеризуется в большинстве случаев преобладанием электрической активности правого желудочка сердца. Угол а колеблется в пределах от 40 до 120°. Частота сердечных сокращений составляет 110—120 в 1 мин. Зубец Р становится более закругленным; отношение его высоты к высоте зубца R в I и II стандартных отведениях — 1:6.

Сохраняется глубокий (больше 1/4 амплитуды зубца R) зубец Q (II,III,aVF,aVR). В I стандартном отведении высота зубца R увеличивается , а глубина зубца S уменьшается. В грудных отведениях (V2—V6) отмечаются высокие зубцы R и довольно глубокие зубцы S. Зубец Т I,II становится выше и составляет 1/з —1/4 часть высоты зубца R.

В отведениях aVL, aVF, V5, V6 зубец Т положительный, но ниже, чем у старших детей, а в отведениях V1—V3 и часто в отведении V4 отрицательный. Продолжительность интервалов и ширина зубцов ЭКГ у детей раннего возраста по сравнению с новорожденными несколько увеличивается. Ширина зубца Р в среднем составляет 0,06 сек.

ЭКГ у детей от 2 до 7 лет характеризуется дальнейшим снижением электрической активности правого желудочка сердца и увеличением левого. Угол а колеблется в пределах от 40 до 100°. Частота сердечных сокращений составляет 90—110 в 1 мин. Отношение высоты зубца P I,II к высоте зубца R I,II — 1 : 8.

Зубец Q в стандартных отведениях менее выражен и наблюдается не нсегда. Высота зубца R в левых грудных отведениях увеличивается, а в правых — уменьшается, в то время как величина зубца S увеличивается в правых грудных отведениях и уменьшается в левых. Зубец Т(I,II,aVL,V5,V6), как правило, положительный и выше, чем у детей раннего возраста;

ЭКГ у детей 7—15 лет отличается от ЭКГ взрослых более выраженной лабильностью частоты сердечных сокращений (что связано, в частности, с наличием значительной дыхательной аритмии), меньшей продолжительностью основных интервалов. Частота пульса варьирует в пределах 70—90 ударов в 1 мин. Больше чем в половине случаев отмечается нормальный тип ЭКГ.

Электрокардиография и электрокардиограмма

Соотношение между амплитудами зубцов становится примерно таким же, как у взрослых. Ширина зубца Р у детей этого возраста в среднем составляет 0,08 сек. (0,06—0,09 сек.), продолжительность интервала Р —Q 0,14 сек. (0,14—0,18 сек.), ширина комплекса QRS 0,08 сек. (0,06— 0,09 сек.), длительность QRST колеблется в пределах 0,34—0,45 сек.

Таким образом, к основным особенностям ЭКГ у детей относятся: 1) более высокая частота сердечных сокращений; 2) лабильность сердечного ритма; 3) преобладание электрической активности правого желудочка над активностью левого; 4) меньшая ширина зубцов и продолжительность интервалов; 5) наличие отрицательного зубца Т в III стандартном и правых грудных отведениях.

Холтеровское мониторирование

Помимо стационарных аппаратов существуют и портативные аппараты для суточного (холтеровского) мониторинга. Они прикрепляются к телу пациента вместе с электродами и записывают всю информацию, поступающую в течение длительного периода времени (обычно в течение суток). Этот метод дает гораздо более полную информацию о процессах в сердце по сравнению с обычной кардиограммой.

Как провести расшифровку анализа ЭКГ, норма и отклонения, патологии и принцип диагностики

Сердечно-сосудистые заболевания – самая распространенная причина смерти людей в постиндустриальном обществе. Своевременная диагностика и терапия органов сердечно-сосудистой системы помогает снизить риск развития патологий сердца среди населения.

Электрокардиограмма (ЭКГ) – один из самых простых и информативных методов исследования сердечной деятельности. ЭКГ регистрирует электрическую активность сердечной мышцы и выводит информацию в виде зубцов на бумажную ленту.

Пример ЭКГ с расшифровкой для чайников

Результаты ЭКГ используются в кардиологии для диагностики различных заболеваний. Самостоятельно расшифровывать ЭКГ сердца не рекомендуется, лучше обратиться к специалисту. Однако для получения общего представления стоит знать, что показывает кардиограмма.

В клинической практике выделяют несколько показаний к проведению электрокардиографии:

  • сильная боль в груди;
  • постоянные обмороки;
  • одышка;
  • непереносимость физических нагрузок;
  • головокружение;
  • шумы в сердце.

При плановом обследовании ЭКГ является обязательным методом диагностики. Могут быть и другие показания, которые определяет лечащий врач. Если у вас появились какие-либо другие тревожные симптомы – незамедлительно обратитесь к врачу, чтобы выявить их причину.

Строгий план расшифровки ЭКГ состоит из анализа полученного графика. На практике используют только суммарный вектор QRS-комплекса. Работа сердечной мышцы представлена в виде непрерывной линии с отметками и цифро-буквенными обозначениями. Расшифровать ЭКГ может при определенной подготовке любой человек, однако поставить правильный диагноз – только врач. Анализ ЭКГ требует знаний алгебры, геометрии и понимания буквенных обозначений.

Читать ЭКГ и ставить заключения приходится не только кардиологам, но и врачам общей практики (например, фельдшерам). Своевременная расшифровка ЭКГ позволяет оказывать эффективную первую помощь пострадавшим.

Существуют строгие показатели нормы на ЭКГ, и любое отклонение уже является признаком нарушений в работе сердечной мышцы. Патологию сможет исключить только квалифицированный специалист – кардиолог.

ЭКГ расшифровка у взрослых – норма в таблице

Анализ кардиограммы

ЭКГ регистрирует сердечную активность в двенадцати отведениях: 6 отведений с конечностей (aVR, aVL, aVF, I, II, III) и шесть грудных отведений (V1-V6). Зубец P отображает процесс возбуждения и расслабления предсердий. Зубцы Q,S показывают фазу деполяризации межжелудочковой перегородки. R – зубец, обозначающий деполяризацию нижних камер сердца, а T-зубец – расслабление миокарда.

Анализ электрокардиограммы

Комплекс QRS показывает время деполяризации желудочков. Время, затрачиваемое на прохождение электрического импульса от узла SA к AV-узлу, измеряется интервалом PR.

Компьютеры, встроенные в большинство устройств ЭКГ, способны измерять время, затрачиваемое на прохождение электрического импульса от узла SA до желудочков. Эти измерения могут помочь врачу оценить частоту сердечных сокращений и j,yfhe;bnm некоторые типы блокад сердца.

Компьютерные программы тоже могут интерпретировать ЭКГ результаты. И по мере совершенствования искусственного интеллекта и программирования они зачастую более точны. Однако интерпретация ЭКГ имеет достаточно много тонкостей, поэтому человеческий фактор по-прежнему остается важной частью оценки.

В электрокардиограмме могут быть отклонения от нормы, которые не влияют на качество жизни больного. Однако существуют стандарты нормальных показателей сердечной деятельности, которые приняты международным кардиологическим сообществом.

Исходя из этих стандартов нормальная электрокардиограмма у здорового человека выглядит следующим образом:

  • интервал RR – 0,6-1,2 секунды;
  • P-зубец – 80 миллисекунд;
  • PR-интервал – 120-200 миллисекунд;
  • сегмент PR – 50-120 миллисекунд;
  • комплекс QRS – 80-100 миллисекунд;
  • J-зубец: отсутствуют;
  • сегмент ST – 80-120 миллисекунд;
  • T-зубец – 160 миллисекунд;
  • интервал ST – 320 миллисекунд;
  • интервал QT – 420 миллисекунд или менее, если частота сокращений сердца составляет шестьдесят ударов в минуту.
  • инд.сок. – 17.3.

Электрокардиография и электрокардиограмма

Нормальная ЭКГ

ЭКГ в норме и в патологии существенно отличается. Поэтому необходимо тщательно подходить к расшифровке кардиограммы сердца.

QRS-комплекс

Любая аномалия в электрической системе сердца вызывает удлинение QRS-комплекса. Желудочки имеют большую мышечную массу, чем предсердия, поэтому комплекс QRS значительно длиннее, чем зубец P. Длительность, амплитуда и морфология комплекса QRS полезны при выявлении сердечных аритмий, аномалий проводимости, гипертрофии желудочков, инфаркта миокарда, электролитных аномалий и других болезненных состояний.

Q, R, T, P, U зубцы

Патологические Q-зубцы возникают, когда электрический сигнал проходит через поврежденную сердечную мышцу. Они считаются маркерами перенесенного ранее инфаркта миокарда.

Депрессия R-зубцов, как правило, тоже связана с инфарктом миокарда, но еще она может быть вызвана блокадой левого пучка Гиса, синдромом WPW или гипертрофией нижних камер сердечной мышцы.

Таблица показателей ЭКГ в норме

Инверсия зубца Т всегда считается ненормальным значением на ЭКГ ленте. Такая волна может быть признаком коронарной ишемии, синдрома Велленса, гипертрофии нижних сердечных камер или расстройства ЦНС.

Зубец P с увеличенной амплитудой может указывать на гипокалиемию и гипертрофию правого предсердия. И наоборот, зубец P с уменьшенной амплитудой может указывать на гиперкалиемию.

U-зубцы чаще всего наблюдаются при гипокалиемии, но могут присутствовать и при гиперкальциемии, тиреотоксикозе или приеме эпинефрина, антиаритмических препаратов класса 1А и 3. Нередко они встречаются при врожденном синдроме удлиненного интервала QT и при внутричерепном кровоизлиянии.

Перевернутый U-зубец может свидетельствовать о патологических изменениях в миокарде. Еще U-зубец иногда можно увидеть на ЭКГ у спортсменов.

Удлинение QTc вызывает преждевременные потенциалы действия во время поздних фаз деполяризации. Это увеличивает риск развития желудочковых аритмий или фатальных фибрилляций желудочков. Более высокие показатели удлинения QTc наблюдаются у женщин, пациентов старшего возраста, гипертоников и у людей маленького роста.

Самые распространенные причины удлинения интервала QT – гипертония и прием определенных медикаментов. Расчет длительности интервала проводится по формуле Базетта. При этом признаке расшифровка электрокардиограммы должна выполняться с учетом истории болезни. Такая мера необходима для исключения наследственного влияния.

Ecard formula1.png

Депрессия ST интервала может указывать на ишемию коронарных артерий, трансмуральный инфаркт миокарда или гипокалемию.

Характеристики всех показателей электрокардиографического исследования

Удлиненный интервал PR (более 200 мс) может указывать на сердечную блокаду первой степени. Удлинение может быть связано с гипокалиемией, острой ревматической лихорадкой или болезнью Лайма. Короткий PR-интервал (менее 120 мс) может быть связан с синдромом Вольфа-Паркинсона-Уайта или синдромом Лауна-Ганонга-Левайна. Депрессия сегмента PR может указывать на травмы предсердий или перикардит.

Для регистрации ЭКГ в клинике принята система, включающая 12 отведений: три стандартных отведения от конечностей (I, II III), три усиленных однополюсных отведения (по Гольдбергеру) от конечностей (aVR, aVL, aVF) и шесть однополюсных грудных (V1, V2, V3, V4, V5, V6) отведений (по Уилсону).

Стандартные отведения. Для регистрации отведений от конечностей (фронтальная плоскость проекции интегрального вектора сердца) электроды устанавливают на правое и левое предплечья и левую голень. При записи ЭКГ в I отведении электрод правой руки соединен с минусом электрокардиографа (отрицательный электрод), электрод левой руки — с плюсом (положительный электрод), ось отведения расположена горизонтально.

II отведение регистрируют при расположении отрицательного электрода на правой руке, положительного — на левой ноге, ось отведения направлена сверху вниз и справа налево. Для записи ЭКГ в III отведении отрицательный электрод электрокардиографа помещают на левую руку, положительный — на левую ногу, ось отведения идет сверху вниз и слева направо. Еще В.

Эйнтховен с сотрудниками (1913) определил оси стандартных отведений как стороны равностороннего треугольника; в этом случае углы между осями равны 60°. Однако, как показали Бюргер и сотр. (1948), в действительности расположение осей отведений, в том числе стандартных, несколько отличается от их геометрического положения из-за негомогенной электропроводности тканей в направлении отведений, сложной геометрической формы тела (в идеальной модели Эйнтховена принято допущение, что сердце расположено в центре гомогенной сферы бесконечного радиуса) и других факторов.

Усиленные однополюсные отведения от конечностей (рис. 2, б). Отведение aVR: минус — объединенный (индифферентный, по терминологии Гольдбергера) электрод левой руки и левой ноги, плюс (активный электрод) — электрод правой руки, ось идет от середины расстояния между левыми электродами (объединенный электрод) через центр сердца (треугольника) к правой руке.

Отведение aVL: минус — объединенный электрод правой руки и левой ноги, плюс — электрод на левой руке, ось проходит снизу вверх и налево. Отведение aVF: минус — объединенный электрод обеих рук, плюс — электрод на левой ноге, ось расположена вертикально положительной половиной между положительными полюсами осей отведений II и III.

Таким образом, так называемые однополюсные отведении от конечностей фактически являются двухполюсными, а однополюсными их называют по традиции. Полюса этих отведений лежат на одной оси с «электрическим центром» сердца (центр линии нулевого потенциала электрического поля). Анализ ЭКГ в отведениях от конечностей позволяет характеризовать направление вектора ЭДС во фронтальной плоскости.

Рис. 3. Схема расположения электродов при регистрации однополюсных грудных отведений ЭКГ: V1 — V6 — общепринятые грудные отведения; V3R — V6R — дополнительные правые грудные отведения; 1, 2, 3, 4 — межреберные промежутки.

Рис. 3. Схема расположения электродов при регистрации однополюсных грудных отведений ЭКГ: V1 — V6 — общепринятые грудные отведения; V3R — V6R — дополнительные правые грудные отведения; 1, 2, 3, 4 — межреберные промежутки.

Прочие типы процедур

Существует и еще несколько методов проведения процедуры. Например, это мониторинг с физической нагрузкой. Отклонения от нормы обычно более выражены на ЭКГ с нагрузкой. Наиболее распространенным способом обеспечить организму необходимую физическую нагрузку является беговая дорожка. Этот способ полезен в тех случаях, когда патологии могут проявляться лишь в случае усиленной работы сердца, например, при подозрении на ишемическую болезнь.

При фонокардиографии записываются не только электрические потенциалы сердца, но и звуки, которые при этом возникают в сердце. Процедура назначается, когда необходимо уточнить возникновение шумов в сердце. Данный метод нередко используется при подозрении на пороки сердца.

Рекомендации по прохождению стандартной процедуры

Необходимо, чтобы во время процедуры пациент был спокоен. Между физическими нагрузками и процедурой должен пройти определенный промежуток времени. Также не рекомендуется проходить процедуру после еды, употребления алкоголя, напитков, содержащих кофеин, или сигарет.

Причины, способные повлиять на ЭКГ:

  • Время суток,
  • Электромагнитный фон,
  • Физические нагрузки ,
  • Прием пищи,
  • Положение электродов.

Типы зубцов

Сначала следует немного рассказать о том, как работает сердце. Оно имеет 4 камеры – два предсердия, и два желудочка (левые и правые). Электрический импульс, благодаря которому оно сокращается, формируется, как правило, в верхней части миокарда – в синусовом водителе ритма – нервном синоатриальном (синусном) узле.

Импульс распространяется по сердцу вниз, сначала затрагивая предсердия и заставляя их сокращаться, затем проходит атриовентрикулярный нервный узел и другой нервный узел – пучок Гиса, и достигает желудочков. Основную нагрузку по перекачке крови на себя берут именно желудочки, особенно левый, задействованный в большом круге кровообращения. Этот этап называется сокращением сердца или систолой.

После сокращения всех отделов сердца настает время их расслабления – диастолы. Затем цикл повторяется снова и снова – этот процесс и называется сердцебиением.

Состояние сердца, при котором не происходит никаких изменений в распространении импульсов, отражается на ЭКГ в виде прямой горизонтальной линии, называемой изолинией. Отклонение графика от изолинии называется зубцом.

Одно сердечное сокращение на ЭКГ содержит шесть зубцов: P, Q, R, S, T, U. Зубцы могут быть направлены, как верх, так и вниз. В первом случае они считаются положительными, во втором – отрицательными. Зубцы Q и S всегда положительны, а зубец R всегда отрицателен.

Ритмичность сокращений

Нарушение ритмичности сокращений называется аритмией. Нерегулярность ритма при аритмии измеряется в процентах. О неправильном ритме свидетельствует отклонение расстояния между аналогичными зубцами более чем на 10%. Синусовая аритмия, то есть, аритмия, сочетающаяся с синусовым ритмом, может быть вариантом нормы для подростков и молодых людей, но в большинстве случаях свидетельствует о начале патологического процесса.

Разновидностью аритмии является экстрасистолия. Он ней говорят в том случае, когда наблюдаются внеочередные сокращения. Единичные экстрасистолии (не более 200 в сутки при холтеровском мониторировании) могут наблюдаться и у здоровых людей. Частые экстрасистолии, появляющиеся на кардиограмме в количестве нескольких штук могут свидетельствовать об ишемии, миокардите, пороках сердца.

Ритмичность сокращений

Этот параметр наиболее прост и понятен. Он определяет количество сокращений за одну минуту. Количество сокращений может быть выше нормы (тахикардия) или ниже нормы (брадикардия). Норма частоты сердечного ритма у взрослых может составлять от 60 до 80 ударов. Однако, норма в данном случае понятие относительное, поэтому брадикардия и тахикардия далеко не всегда могут быть свидетельством патологии.

Нормы частоты сердечных сокращений для детей разных возрастов

Возраст ЧСС, уд/мин
Новорожденные 140-160
6 месяцев 130-135
1 год 120-125
2 года 110-115
3 года 105-110
5 лет 100-105
8 лет 90-100
10 лет 80-85
12 лет и старше 70-75

Существует несколько типов сердечного ритма в зависимости от того, где начинает распространяться нервный импульс, приводящий к сокращению сердца:

  • Синусовый ,
  • Предсердный,
  • Атриовентрикулярный,
  • Желудочковый.

В норме ритм всегда синусовый. При этом синусовый ритм может сочетаться как с ЧСС выше нормы, так и с ЧСС ниже нормы. Все остальные типы ритмов являются свидетельством проблем с сердечной мышцей.

Предсердный ритм

Предсердный ритм также нередко появляется на кардиограмме. Является ли предсердный ритм нормальным или же это разновидность патологии? В большинстве случаев предсердный ритм на ЭКГ не является нормальным. Тем не менее, это сравнительно легкая степень нарушения сердечного ритма. Она возникает в случае угнетения или нарушения работы синусного узла.

Ритм, исходящий из атриовентрикулярного узла. При атриовентрикулярном ритме частота пульса, как правило, падает до величины менее 60 ударов в минуту. Причины – слабость синусного узла, атриовентрикулярная блокада, прием некоторых препаратов. Атриовентрикулярный ритм, сочетающийся с тахикардией, может встречаться при проведении операций на сердце, ревматизме, инфаркте.

Желудочковый ритм

При желудочковом ритме сократительные импульсы распространяются из желудочков. Частота сокращений падает до значения ниже 40 ударов в минуту. Наиболее тяжелая форма нарушения ритма. Встречается при остром инфаркте, пороках сердца, кардиосклерозе, недостаточности сердечного кровообращения, в предагональном состоянии.

Кардиограмма сердца расшифровка, норма, фото

Регистрация электрокардиограммы — способ изучения электрических сигналов, образующихся при деятельности мышц сердца. Для фиксирования данных электрокардиограммы применяют 10 электродов: 1 нулевой на правой ноге, 3 стандартных от конечностей и 6 в области сердца.

Этими электродами снимаются 12 отведений работы сердечных мышц:

  • I стандартное отведение фиксирует характеристики распространения сигнала синусовой структуры по передней стенке органа;
  • III стандартное отведение воспроизводит поведение биоэлектрических проявлений в задней стенке органа;
  • II стандартное отведение демонстрирует суммированные показания I и III отведения;
  • aVR показывает формирование электрической активности в правой боковой стенке сердечных мышц;
  • aVL регистрирует электрические сигналы левой передне-боковой стенке этого органа;
  • aVF фиксирует биоэлектрические импульсы в задне-нижней стенке сердечных мышц;
  • V1 и V2 записывают электрические сигналы правого желудочка сердца;
  • показывает изменение электрической активности мышц в межжелудочковой перегородке;
  • V4 отображает прохождение активирующих сигналов в верхушечной части органа;
  • V5 показывает перемещение электрических сигналов в передне — боковой стенке левого желудочка этого органа тела;
  • V6 отмечает проведение сигналов в боковой стенке левого желудочка.

Следствием снятия электрических показателей, работы различных отделов органа, становится создание электрокардиограммы.

Существуют электронные датчики, которые могут записывать параметры ЭКГ на жесткий диск системного блока и в случае необходимости выводить эти данные на монитор или распечатывать на требуемых форматах бумаги.

Выдает результат анализа параметров электрокардиограммы специалист кардиолог. Расшифровку записи ведет врач путем установления длительности интервалов между различными элементами зафиксированных показателей. Разъяснение особенностей электрокардиограммы содержит много моментов:

  • Предварительно выясняются пол и возраст пациента, так как в разнообразных возрастных категориях присутствуют свои нормы показателей ЭКГ. Характеристики кардиограммы различаются у представителей сильного и слабого пола;
  • Оцениваются данные сердечных сокращений и ритма. Количество сердечных толчков находят, сделав подсчет времени между верхними точками R на ЭКГ (интервал RR);
  • Вслед за этим разбирается продолжительность интервалов и размер зубцов и сегментов кардиограммы, помеченных знаками латинского алфавита. Зубцов бывает 6 – P, Q, R, S, T, U. Любой из таких зубцов отображает функционирование конкретного места сердца. Необходимо понимать, что те зубцы, которые расположены ниже средней линии, будут отрицательными, а те, что находятся выше средней линии, именуются положительными зубцами;
  • Р демонстрирует динамику развития потенциалов электрических сигналов в мышечных волокнах предсердия. Диагностика зубца Р предполагает выяснение его амплитуды, продолжительности, установление полярности и формы. Выясняют протяженность интервала PQ;
  • Q определяет разность потенциалов при сокращении в мышцах межжелудочковой перегородки;
  • R – отображает изменения электрической активности мышц при сокращении стенки левого желудочка сердца;
  • S описывает значения электрических импульсов возникающих при сокращениях мышц желудочков сердца;
  • Т определяет начало восстановления исходных значений электрических потенциалов в мышцах сердца.
  • U определяет позднюю стадию восстановления исходных значений электрических потенциалов в мышцах сердца. При расшифровке ЭКГ значения этого зубца не учитывается;
  • Определяется расположение электрической оси сердца, демонстрирующей координаты вектора биоэлектрических изменений, идущих в сердечных мышцах при каждом их сокращении. Расположение показывают в градусах, угол α;
  • Определяется интервал QT. Если отмечается удлинение этого расстояния, тогда специалист может предположить ишемическое состояние сердца, ревматизм или миокардит;
  • Исследуются характеристики комплекса с точками QRS;
  • В завершении, рассматривается интервал ST. Этот фрагмент кардиограммы описывает восстановительный этап деполяризации сердечной мышцы.
  • При наличии данных проводится сопоставление разных ЭКГ пациента, для анализа динамики развитии заболевания.

Рассмотрение стандартной кардиограммы сердца представлено следующими показателями:

  • Стандартное размещение электрической оси сердца находится под углом α от 40˚до 70˚;
  • Пульсация сердца находится в интервале от 60 до 80 толчков в минуту,
  • Ритм работы сердца должен поддерживаться синусовым узлом;
  • Верхние точки диаграммы Q и S всегда расположены ниже нейтральной линии;
  • Верхние точки зубцов Р, Т, R расположены выше ординарной линии;
  • Относительная высота зубца R, непременно больше размера зубца S;
  • Протяженность комплекса точек QRS должна составлять не свыше 120 мс;
  • Нормальные значения интервала QT находятся в диапазоне 390-450 мс;
  • Промежуток интервала ограниченный точками ST, в обычной ЭКГ находится на ординарной линии записи.

Инфаркт миокарда возникает вследствие обострения ишемической болезни, когда значительно сужается внутренняя полость коронарной артерии сердечной мышцы. Если на протяжении 15 – 20 минут не устранить указанное нарушение, наступает гибель мышечных клеток сердца, получающих кислород и питательные вещества из этой артерии.

Это обстоятельство создает значительные нарушения в функционировании сердца и оказывается тяжелой и серьезной угрозой для жизни. При возникновении инфаркта отделов сердца, электрокардиограмма поможет выявить место некроза. Указанная кардиограмма содержит заметно проявившиеся отклонения электрических сигналов сердечной мышцы:

  • Возрастание интенсивности пульсации сердца;
  • Возрастание протяженности комплекса QRS;
  • За счет поднятия отрезка ST, будет наблюдаться изменение зубца R, он делается сглаженным. Суммарное возвышение ST на кардиограмме, будет похожим на «изогнутую спину кошки»;
  • Появляется расположенный внизу от средней линии, графического изображения, зубец Т.

Расстройство ритма сокращения сердечных мышц обнаруживается при появлении сдвигов на электрокардиограмме:

  • Возрастание интенсивности толчков сердца больше 100 или замедление меньше 60 в минуту;
  • Выявляются отклонения в движении биоэлектрических импульсов по регулирующим структурам сердечной мышцы.

Увеличение объема сердечных мышц – это адаптация органа к новым условиям функционирования. Перемены, появляющиеся на электрокардиограмме, определены высокой биоэлектрической силой, характерного участка мышц, задержкой перемещения биоэлектрических импульсов в его толще, появлении признаков кислородного голодания.

Заключение.

Электрокардиографические показатели патологии сердца разнообразные. Их чтение сложная деятельность, в которой необходимо специальное обучение и совершенствование практических навыков. Специалисту, характеризующему ЭКГ, необходимо знать основные положения физиологии сердца, различные версии кардиограмм.

Ему необходимо иметь навыки в умении определять аномалии деятельности сердца. Высчитывать воздействие лекарственных препаратов и других факторов, на возникновение отличий, в структуре зубцов и промежутков ЭКГ. Поэтому расшифровку электрокардиограммы следует доверить специалисту, который сталкивался в своей практике с различными вариантами недостатков в работе сердца.

Показания к проведению и правила расшифровки результатов ЭКГ

Еще одним важным параметром является электрическая ось сердца. Она измеряется в градусах и отражает направление распространения электрических импульсов. В норме она должна быть несколько наклонена к вертикали и составлять 30-69º. При угле в 0-30º говорят о горизонтальном расположении оси, при угле в 70-90º – о вертикальном. Отклонение оси в ту или иную сторону может свидетельствовать о каком-либо заболевании, например, о гипертонии или внутрисердечных блокадах.

Хоть кардиография и рутинный метод исследования, она тоже имеет показания. Для определения причины боли или дискомфорта в области груди, пациент обращается к терапевту или кардиологу. Врач изначально собирает анамнез, осматривает, измеряет давление и пульс, аускультирует сердце, а потом уже направляет на исследование, дабы узнать, что показывает кардиограмма.

Показания к проведению ЭКГ:

  • загрудинная боль (подозрение на стенокардию или инфаркт миокарда);
  • одышка;
  • дискомфорт в области сердца после перенесенных вирусных или бактериальных инфекций;
  • патологическое сердцебиение, перебои в работе сердечной мышцы.

Обязательно проведение ЭКГ в таких случаях:

  • при госпитализации в стационарное отделение любого профиля;
  • перед хирургическими вмешательствами;
  • во время профилактических осмотров взрослых;
  • для школьников при выборе группы занятий физической культурой.

Электрокардиограмму сердца используют и для первичной диагностики патологических состояний, и для контроля динамики заболевания. При назначении препаратов доктор полагается и на субъективные ощущения пациента, и на данные ЭКГ, которые отображают фактические изменения в сердечно-сосудистой системе.

Техника выполнения

Проведение кардиографии не требует особо сложных навыков, поэтому как делать кардиограмму сердца, знает средний и младший медицинский персонал. Устройство для подобной манипуляции − кардиограф. Он бывает стационарным и находится постоянно в специально оборудованном кабинете, который имеет каждая поликлиника, или мобильным – для удобной записи ЭКГ у постели больного.

При проведении ЭКГ пациент ложится на спину. Точки, где накладывают электроды, освобождают от одежды и смачивают изотоническим раствором хлорида натрия для улучшения проводимости. Электроды в виде пластин цепляют на конечности: красный – на правую руку, желтый − на левую, зеленый – на левую ногу и черный на правую.

На грудную клетку устанавливают шесть электродов в виде присосок. Они носят название грудных отведений (V1-V6), а электроды с конечностей считают основными (I, II, III) и усиленными (aVL, aVR, aVF). Каждое из отведений отвечает за определенный участок в сердце.

Важно, чтобы перед плановым проведением электрокардиографии пациент не употреблял спиртное, кофе. При снятии нежелательно двигаться, разговаривать, поскольку это приводит к искажению результатов обследования.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
onivnas.ru