Возведение в иррациональную степень

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так: an, а в виде формулы ее состав можно представить следующим образом: Степени с натуральными показателями: понятие квадрата и куба числа

Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до 84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 8 8 8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n».  Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем прочесть «8 в 12-й степени», «8 в степени 12» или «12-я степень 8-ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7(72), то мы можем сказать «7 в квадрате» или «квадрат числа 7». Аналогично третья степень читается так: 53 – это «куб числа 5» или «5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 57 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4,32)9 основанием будет дробь 4,32, а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 123, (-3)12, -2352, 2,4355, 73.

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи:(−2)3 и −23. Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 23.

Иногда в книгах можно встретить немного другое написание степени числа – a^n (где а – основание, а n – показатель). То есть 4^9 – это то же самое, что и 49. В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15^ (21), (−3,1) ^ (156). Но мы будем использовать обозначение anкак более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n-ное число раз.  Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

Возведение в иррациональную степень

Это следует знать:

  1. Возведением числа в натуральную степень называется умножение числа (понятие число и цифра в статье будем считать эквивалентными) само на себя в таком количестве, каков показатель степени (в дальнейшем будем использовать параллельно и просто слово показатель). 6^3 = 6*6*6 = 36*6 =216. В общем виде это выглядит так: m^n = m*m*m*…*m (n раз).
  2. Нужно учитывать, что при возведении отрицательного числа в натуральную степень, оно станет положительным, если показатель чётный.
  3. Возведение числа в показатель 0 даёт единицу, при условии, что оно не равно нулю. Ноль в нулевой степени считается неопределённым. 17^0 = 1.
  4. Извлечением корня некой степени из числа называется нахождение такого числа, которое при возведении в соответствующий показатель даст искомое. Так, корень кубический из 125 равен 5, поскольку 5^3 = 125.
  5. Если требуется возвести число в дробную положительную степень, то необходимо возвести число в показатель знаменателя и извлечь из него корень показателя числителя. 6^5/7 = корень седьмой степени из произведения 6*6*6*6*6.
  6. Если требуется возвести число в отрицательный показатель, то необходимо найти цифру обратную данной. x^-3 = 1/x^3. 8^-4 = 1/8^4 = 1/8*8*8*8 = 1/4096.

Свойства

Основные свойства операции возведения в степень:

  • (ab)n=anbn{displaystyle left(abright)^{n}=a^{n}b^{n}}
  • (ab)n=anbn{displaystyle left({a over b}right)^{n}={{a^{n}} over {b^{n}}}}
  • anam=an m{displaystyle a^{n}a^{m}=a^{n m}}
  • anam=an−m{displaystyle left.{a^{n} over {a^{m}}}right.=a^{n-m}}
  • (an)m=anm{displaystyle left(a^{n}right)^{m}=a^{nm}}.

Запись anm{displaystyle a^{n^{m}}} не обладает свойством ассоциативности (сочетательности), то есть в общем случае левая ассоциативность не равна правой ассоциативности (an)m≠a(nm){displaystyle (a^{n})^{m}neq a^{left({n^{m}}right)}}, результат будет зависеть от последовательности действий, например, (22)3=43=64{displaystyle (2^{2})^{3}=4^{3}=64}, а 2(23)=28=256{displaystyle 2^{left({2^{3}}right)}=2^{8}=256}.

Принято считать запись anm{displaystyle a^{n^{m}}} равнозначной a(nm){displaystyle a^{left({n^{m}}right)}}, а вместо (an)m{displaystyle (a^{n})^{m}} можно писать просто anm{displaystyle a^{nm}}, пользуясь предыдущим свойством. Впрочем некоторые языки программирования не придерживаются этого соглашения.

Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, ab≠ba{displaystyle a^{b}neq b^{a}}, например, 25=32{displaystyle 2^{5}=32}, но 52=25{displaystyle 5^{2}=25} (при этом отдельно изучается уравнение xy=yx{displaystyle x^{y}=y^{x}}).

Что такое степени с иррациональным и действительным показателем

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: Что такое степени с целым показателем.

При этом n – любое целое положительное число.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: am·an=am n .      

Если n у нас равен 0, то am·a0=am (такое равенство также доказывает нам, чтоa0=1). Но если а также равно нулю, наше равенство приобретает вид 0m·00=0m, Оно будет верным при любом натуральном значении n, и неважно при этом, чему именно равно значение степени 00, то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 00 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a0=1 сходится со свойством степени (am)n=am·n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.     

Пример 2

Разберем пример с конкретными числами: Так, 50  – единица, (33,3)0=1, -4590=1, а значение 00не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: am·an=am n.

Введем условие: m=−n, тогда a не должно быть равно нулю. Из этого следует, что a−n·an=a−n n=a0=1. Выходит, что an и a−n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь   1an.

Как считают дробную степень числа

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1an. Таким образом, a-n=1an при условии a≠0  и n – любое натуральное число.

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m/n, где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем amn.  Для того, чтобы свойство степени в степени выполнялось, равенство amnn=amn·n=am должно быть верным.

Учитывая определение корня n-ной степени и что amnn=am, мы можем принять условие amn=amn, если amn имеет смысл при данных значениях m, n и a.

Приведенные выше свойства степени с целым показателем будут верными при условии amn=amn.

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m/n – это корень n-ой степени из числа a в степени m. Это справедливо в том случае, если при данных значениях m, n и a выражение amn сохраняет смысл.

Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.

amn=amn

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m/n можно выразить как

0mn=0mn=0 при условии целого положительного m и натурального n.

При отрицательном отношении mn{amp}lt;0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Возведение в иррациональную степень

Выражение  amn иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m. Так, верны записи (-5)23, (-1,2)57, -12-84, в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень  amn с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a, в показателе которой стоит сократимая обыкновенная дробь, считается степенью a, в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись am·kn·k, то мы можем свести ее к amn и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то  amn имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m·kn·k степень можно заменить на  amn.

Степень числа a с несократимым дробным показателем m/n – можно выразить в виде amn в следующих случаях: – для любых действительных a, целых положительных значений m и нечетных натуральных значений n. Пример: 253=253, (-5,1)27=(-5,1)-27, 0519=0519.

– для любых отличных от нуля действительных a, целых отрицательных значений m и нечетных значений n, например, 2-53=2-53, (-5,1)-27=(-5,1)-27

– для любых неотрицательных a, целых положительных значений m и четных n, например, 214=214, (5,1)32=(5,1)3, 0718=0718.

– для любых положительных a, целых отрицательных m и четных n, например, 2-14=2-14, (5,1)-32=(5,1)-3, .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: -2116, -21232, 0-25.

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6/10=3/5. Тогда должно быть верным (-1)610=-135, но -1610=(-1)610=110=11010=1, а (-1)35=(-1)35=-15=-155=-1.

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m/n определяется как 0mn=0mn=0. В случае отрицательных a запись amn не имеет смысла. Степень нуля для положительных дробных показателей m/n определяется как 0mn=0mn=0, для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 51,7, 325-237.

 51,7=51710=5710325-237=325-177=325-177   

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a0, a1, a2, …. Например, возьмем значение a=1,67175331…,тогда

a0=1,6, a1=1,67, a2=1,671, …,a0=1,67, a1=1,6717, a2=1,671753, …

 и так далее (при этом сами приближения являются рациональными числами).

Последовательности приближений мы можем поставить в соответствие последовательность степеней aa0, aa1, aa2, …. Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a=3,  тогда aa0=31,67, aa1=31,6717, aa2=31,671753, … и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем  a. В итоге : степень с иррациональным показателем вида 31,67175331.. можно свести к числу 6,27.

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как aa. Его значение – это предел последовательности aa0, aa1, aa2, …, где a0, a1, a2, … являются последовательными десятичными приближениями иррационального числа a. Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0a=0 Так, 06=0,02133=0. А для отрицательных этого сделать нельзя, поскольку, например, значение 0-5, 0-2π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 12, 15в2 и 1-5 будут равны 1.

Возведение в целую отрицательную степень если модуль больше единицы

az={az,z{amp}gt;01,z=0,a≠01a|z|,z{amp}lt;0,a≠0{displaystyle a^{z}={begin{cases}a^{z},{amp}amp;z{amp}gt;0\1,{amp}amp;z=0,aneq ;0\{frac {1}{a^{|z|}}},{amp}amp;z{amp}lt;0,aneq ;0end{cases}}}

Результат неопределён при a=0{displaystyle a=0} и z⩽0{displaystyle zleqslant 0}.

  • 6 целых 7/17 = 109/17;
  • 2,54 = 254/100.

Теперь рассмотрим, как возвести число в отрицательную степень в данных условиях. Уже из вышеизложенного, мы можем предположить, чего нам ждать от результата вычислений. Так как двойная дробь при упрощениях переворачивается, то модуль цифры будет уменьшаться тем быстрее, чем больше модуль показателя.

Для начала рассмотрим ситуацию, когда данная в задании цифра положительная.

Прежде всего, становится понятно, что конечный результат будет больше нуля, ибо деление двух положительных всегда дает положительное. Снова рассмотрим на примерах как это делается:

  • 6 целых 1/20 в минус пятой степени = 121/20^-5 = 1/(121/20)^5 = 1/121^5/20^5 = 20^5/121^5 = 3200000/25937424601 = 0,0001234;
  • 2,25^-6 = (225/100)^-6 = 1/(225/100)^6 = 1/225^6/100^6 = 100^6/225^6 = 100*100*100*100*100*100/225*225*225*225*225*225 = 0,007413.

Графики четырёх функций вида y = a x {displaystyle y=a^{x}} , a {displaystyle a} указано рядом с графиком функции

Как видим, особых сложностей действия не вызывают, и все наши первоначальные предположения оказались истинными.

Теперь обратимся к случаю отрицательной цифры.

Для начала можно предположить, что если показатель чётный, то итог будет положительным, если показатель нечётный, то и результат окажется отрицательным. Все предыдущие наши выкладки в данной части, будем считать действительными и сейчас. И снова разберём на примерах:

  • -3 целых 1/2 в минус шестой степени = (-7/2)^-6 = 1/(-7/2)^6 = 1/(-7)^6/2^6 = 2*2*2*2*2*2/(-7)*(-7)*(-7)*(-7)*(-7)*(-7) = 64/117649 = 0,000544;
  • -1,25^-5 = (-125/100)^-5 = 1/(-125/100)^5 = 1/(-125)^5/100^5 = 100^5/(-125)^5 = 100*100*100*100*100/(-125)*(-125)*(-125)*(-125)*(-125) = 10000000000/(-30517578125) = -0.32768.

Таким образом, все наши рассуждения оказались верными.

Что такое степени с иррациональным и действительным показателем

Обобщение на рациональные степени:
apq=(aq)p,p∈Z,q∈N{displaystyle a^{p over q}=({sqrt[?]{a}})^{p},quad pin mathbb {Z} ,qin mathbb {N} }.

Результат неопределён при a=0{displaystyle a=0} и p/q⩽0{displaystyle p/qleqslant 0}.

Для отрицательных a{displaystyle a} в случае нечётного p{displaystyle p} и чётного q{displaystyle q} в результате вычисления степени получаются комплексные числа. Таким образом, понятие рациональной степени объединяет целочисленную степень и целочисленный корень.

amn=amn

Вещественная степень

Если a⩾0,r{displaystyle ageqslant 0,r} — вещественные числа, причём r{displaystyle r} — иррациональное число, возможно определить ar{displaystyle a^{r}} следующим образом: поскольку любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для r{displaystyle r} рациональный интервал [p,q]{displaystyle [p,q]} с любой степенью точности, то общая часть всех соответствующих интервалов [ap,aq]{displaystyle [a^{p},a^?]} состоит из одной точки, которая и принимается за ar{displaystyle a^{r}}.

Другой подход основан на теории рядов и логарифмов (как определяется для комплексной степени

Потенцирование и антилогарифм

Потенцирование (от нем. potenzieren[К 1]) — нахождение числа по известному значению его логарифма, то есть решение уравнения loga⁡x=b{displaystyle log _{a}x=b}. Из определения логарифма вытекает, что x=ab{displaystyle x=a^{b}}, таким образом, возведение a{displaystyle a} в степень b{displaystyle b} может быть названо другими словами «потенцированием b{displaystyle b} по основанию a{displaystyle a}».

Антилогарифм — вычислительная операция нахождения числа по известному значению логарифма, как самостоятельное понятие используется в математических таблицах[en], логарифмических линейках, микрокалькуляторах. Результат антилогарифма по основанию a{displaystyle a} для числа b{displaystyle b} соответствует возведению в степень ab{displaystyle a^{b}}.

Комплексная степень

ez=exeyi=ex(cos⁡y isin⁡y)=excos⁡y iexsin⁡y.{displaystyle e^{z}=e^{x}e^{yi}=e^{x}(cos y isin y)=e^{x}cos y ie^{x}sin y.}
ab=(eLn⁡(a))b=(eln⁡(r) i(θ 2πk))b=eb(ln⁡(r) i(θ 2πk)).{displaystyle a^{b}=(e^{operatorname {Ln} (a)})^{b}=(e^{operatorname {ln} (r) i(theta 2pi k)})^{b}=e^{b(operatorname {ln} (r) i(theta 2pi k))}.}

При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно.

Степень как функция

Поскольку в выражении xy{displaystyle x^{y}} используются два символа (x{displaystyle x} и y{displaystyle y}), то его можно рассматривать как одну из трёх функций:

  • функцию переменной x{displaystyle x} (при этом y{displaystyle y} — параметр). Такая функция называется степенной (частный случай полиномиальной функции);
  • функцию переменной y{displaystyle y} (при этом x{displaystyle x} — параметр). Такая функция называется показательной (частный случай — экспонента);
  • функцию двух переменных.

Полезные формулы

xy=ayloga⁡x{displaystyle x^{y}=a^{ylog _{a}x}}
xy=eyln⁡x{displaystyle x^{y}=e^{yln x}}
xy=10ylg⁡x{displaystyle x^{y}=10^{ylg x}}

Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции xy{displaystyle x^{y}}, и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

Употребление в устной речи

Запись an{displaystyle a^{n}} обычно читается как «a в n{displaystyle n}-й степени» или «a в степени n». Например, 104{displaystyle 10^{4}} читается как «десять в четвёртой степени», 103/2{displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 102{displaystyle 10^{2}} читается как «десять в квадрате», 103{displaystyle 10^{3}} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры.

В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо a2{displaystyle a^{2}}, a3{displaystyle a^{3}} древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

В разговорной речи иногда говорят, например, что a3{displaystyle a^{3}} — «a умноженное само на себя три раза»[3], имея в виду, что берётся три множителя a{displaystyle a}. Это не совсем точно и может привести к двусмысленности, так как количество операций умножения будет на одну меньше: a3=a⋅a⋅a{displaystyle a^{3}=acdot acdot a} (три множителя, но две операции умножения).

Обозначение

История

В Европе сначала степень записывали как произведение — например, x4{displaystyle x^{4}} изображалось как xxxx.{displaystyle xxxx.} Первые попытки сокращённой записи осуществили в XVII веке Пьер Эригон и шотландский математик Джеймс Юм, они записывали x4{displaystyle x^{4}} в виде x4{displaystyle x4} и xIV{displaystyle x^{IV}} соответственно[6]. Начиная с Декарта, степень обозначали «двухэтажной» записью вида ab{displaystyle a^{b}}.

Значок степени

3^2 = 9; 5^2 = 25; 2^3 = 8; 5^3 = 125.

Случается, что циркумфлекс используют и при написании сложных, громоздких математических выражений и формул на бумаге (особенно с громоздким показателем)[источник не указан 108 дней].

Иногда в компьютерных системах и языках программирования значок возведения в степень имеет левую ассоциативность, в отличие от принятого в математике соглашения о правой ассоциативности возведения в степень.
То есть некоторые языки программирования (например, программа Excel) могут воспринимать запись a^b^c, как (a^b)^c, тогда как другие системы и языки (например, Haskell, Perl, Wolfram|Alpha и многие другие) обработают эту запись справа налево: a^(b^c),
как это принято в математике: abc=a(bc){displaystyle a^{b^{c}}=a^{left(b^{c}right)}}.

Некоторые знаки возведения в степень в языках программирования и компьютерных системах:

  • x ↑ y: Алгол, некоторые диалекты Бейсика;
  • x ^ y: Бейсик, J, MATLAB, R, Microsoft Excel, TeX, bc[К 2], Haskell[К 3], Lua, MathML и большинство систем компьютерной алгебры;
  • x ^^ y: Haskell[К 4], D;
  • x ** y: Ада, Bash, Кобол, Фортран, FoxPro, Gnuplot, OCaml, Perl, PL/I, PHP[К 5], Python, REXX, Ruby, SAS, Seed7, Tcl, ABAP, Haskell[К 6], Turing[en], VHDL, ECMAScript[К 7][К 8], AutoHotkey[К 8], JavaScript;
  • x⋆y: APL.

{displaystyle y=a^{x}}

Во многих языках программирования (например, в Си и Паскале) отсутствует операция возведения в степень, и для этой цели используют стандартные функции.

Вариации и обобщения

Гипероператор возведения в степень — тетрация. В общей алгебре используются обобщения понятия степени, наиболее общим образом степень может быть определена для всякой операции, обладающей свойством степенной ассоциативности (таким образом, например, из декартова произведения может быть определена декартова степень).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
onivnas.ru